
1

RECOM: A Reflective Architecture of Middleware
Yang Sizhong Liu Jinde

(MCI, College of Computer Science and Engineering, UEST of China Chengdu 6110054)
[Abstract] Current middleware is limited in its flexibility and adaptability in face of environment varying and

different user requirements. Applying the reflection technology to the middleware design has become a new
research field. First, the concepts of reflection and reflective middleware are introduced. This paper further
compares the processing of middleware to the reflection mechanism, and then the reflective view of middleware is
yielded. Based on this, the idea of employing binding-reification reflective model in middleware design is
proposed and the design principles of a reflective middleware prototype named RECOM are deduced.. Whereafter,
this paper details the implementation of RECOM about its reflective structure, and configurable reflective layers.
Finally, some related work is discussed, and some concluding remarks and topics for further study are presented.

[key words] reflection middleware reflective view binding-reification reflective layer

1 Reflection
 Abstractly, reflection refers to the capability of a system to reason about and act upon itself.
More specifically, a reflective system is one that provides a representation of its own behavior,
which is amenable to inspection and adaptation, and is causally connected to the underlying
behavior it describes. "Causally-connected" means that changes made to the self-representation
are immediately mirrored in the underlying system’s actual state and behavior, and vice-versa. It
can therefore be said that a reflective system is one that supports an associated causally connected
self-representation (CCSR)[6].

Just as objects in conventional OOP are representations of real world entities, they can
themselves be represented by other objects, usually referred to as meta-objects, whose
computation is intended to observe and modify their referents (the objects they represent)[4]. Meta-
computation is often performed by meta-objects by trapping the normal computation of their
referents; in other words, an action of the referent is trapped by the meta-object, which performs a
meta-computation either substituting or encapsulating the referent’s actions. Of course, meta-
objects themselves can be represented, i.e., they may be the referents of meta-meta-objects, and so
on. A reflective system is thus structured in multiple levels, constituting a reflective tower. The
objects in the base level are termed base-objects and perform computation on the entities of the
application domain. The objects in the other levels (termed meta-levels) perform computation on
the objects residing in the lower levels.

Each reflective computation can be separated into two logical aspects: computational flow
context switching and meta-behavior. A computation starts with the computational flow in the
base level; when the base entity begins an action, such action is trapped by the meta-entity and the
computational flow raises at meta-level (shift-up action). Then the meta-entity completes its meta-
computation, and when it allows the base-entity to perform the action, the computational flow
goes back to the base level (shift-down action).

In all reflective models, an essential concept is that of reification. In order to compute on the
lower levels’ computation, each level maintains a set of data structures representing (or, in
reflection parlance, a reification of) such computation. In other words, reification means making
the hidden aspects explicit, so these aspects can be inspected and adapted by applications. Of
course, the aspects of the lower levels’ system that are reified depend on the reflective model (e.g.,
structure, state and behavior, communication). In [7], according to the relationship between meta-
entities and base-entities, a first reflective model classification has been pointed out. Ferber
remarks the existence of three major reflective approaches: meta-object model, meta-class model,
and meta-communication model. In any case, the data structures comprising a reification are
causally connected to the aspect(s) of the system being reified; that is, any change to those aspects
reflects in the reification, and vice versa. It is a duty of the reflective framework to preserve the
causal connection link between the levels: the designers and programmers of meta-objects are
insulated from the details of how causal connection is achieved.
2 Reflective View of Middleware

Reflective Middleware is concerned with applying techniques from the field of reflection in
order to achieve flexibility and adaptability in middleware platforms. Geoff Coulson offers a
concise definition of reflective middleware: reflective middleware is simply a middleware system
that provides inspection and adaptation of its behavior through an appropriate CCSR[13]. The
reflection does for middleware what it does for any system: it makes it more adaptable to its

2

environment and better able to cope with change.
 In distributed applications based on middleware, in order for two objects in different address
spaces to interact, the client first gets a proxy for the server. The so-called proxy is a local object
representing the remote object, and has the same interface to the remote object which it represents.
When the client invokes a method on the remote object through the proxy, the proxy relays the
invocation to the target server using the communication mechanism supplied by the middleware.
After getting the results, the proxy then returns them to the original client. The client thus
completes the procedure of a remote method invocation. The process of associating the client
proxy to the service object for communication and the results of the process are referred to as
binding.
 After examined closely, the middleware processing is found to be similar to the mechanism
of reflective computation described above. These two are analogized as follows: when the base
entity begins an action (The client and the server start to interact.), such action is trapped by the
meta-entity (The client doesn't invoke the server directly, but passes the message to the
middleware instead. In this case, the proxy is in charge of trapping the message.), and the
computational flow raises at meta-level. Then the meta-entity completes its meta-computation
(Marshal the invocation message, and relay it to the server side through network. Then, on the
server side, invoke the target server, marshal the results, and pass the results back to the client side.
The client side unmarshals the results.), and when it allows the base-entity to perform the action
(The proxy returns the results to the original client), the computational flow goes back to the base
level.

Thus it is nature to look on the binding established between the client and the server involved
in interaction as a composition of several meta-objects with different functions. That is to say,
binding is reified as the self-representation of the middleware system, which may be inspected and
adapted by applications in order to meet the different needs of quality of service in different
scenarioes. Figure 1 illustrates the reflective view of middleware.

This reflective model is distinct from the three models mentioned above. It reifies the binding
between distributed objects, and is named binding-reification reflective model. The other three
reflective models reify the action of a single object, but not the action between objects. Employing
the binding-reification reflective model, we have designed a prototype of reflective middleware,
RECOM (REflective Configurable Middleware).
3 Design Principles of RECOM
 (1) Changes made to the self-representation are immediately mirrored in the underlying
system’s actual state and behavior. In this case, the self-representation is the binding between
distributed objects. Bindings may be considered to be typeable. The type of a binding involves the
invocation semantics (synchronized or asynchronized), choice of protocols, possible quality of
service, different resource usage and other binding properties. Thus the application programmer
may make choice among bindings of different types, and it is also possible to adapt (or configure)
the chosen binding.

(2) Reflective infrastructure should support reflective transparency. On one side, this requires
the meta-level (the representation of middleware) to be transparent to the base-entities

Server

Communication

 Infrastructure

Self-representation of Middleware

Objects in Applications

Figure 1 Reflective View of Middleware

Client

Proxy

Meta-object

Meta-object
Meta-object

Meta-object

3

(application objects), which is in line with the access transparency in conventional middleware.
On the other side, the meta-entities performing meta-computing are demanded to be independent
of the specific types of the corresponding base-entities. In other words, the modules comprising
the binding are expected to be of general purpose, so they can perform meta-computation on base-
entities of different types.

(3) Reification means making the hidden aspects explicit, so these aspects can be inspected
and adapted by applications. According to different needs of quality of service, application
programmers may change the binding, or probably design their own modules and configures them
into the original binding. This also means that the modules comprising the binding should present
an unified interface; in addition, there should be a configuration mechanism open to the
application programmers, so it is necessary to design an explicit binding protocol.
4 Implementation of RECOM

RECOM is based on Java. Built on the Java platform, we can use the Java Virtual Machine to
mask the heterogeneity of hardware and operating systems.
4.1 Reflective Structure

An interface to a remote object is represented in RECOM by a local proxy object. Typically,
this is a simple stub object that turns a typed invocation into a generic (but fully typed) form and
then passes the request to the top layer of a protocol stack. RECOM stubs are very lightweight, so
stub classes are generated on demand within client process, by introspection on the interface
definition using Java Core Reflection[15], and link them dynamically, when interface references are
resolved.

The layers of a RECOM communication stack can be viewed as a set of meta-objects. Each
meta-object in turn performs a meta-computing on the invocation as a data structure before it is
ultimately invoked on the destination object, which happens in the ServerCallLayer also using
Java Core Reflection. This means that RECOM provides support to represent invocations as
generic first-class objects, so it allows meta-objects composing the middleware to examine and
modify the parameters and semantics of the invocation.

 Figure 2 illustrates how a communication stack can be assembled as a number of meta-
objects that perform meta-computation on an invocation. Meta-objects are fully general Java
objects and fully type-safe. A protocol stack is usually materialized in layers, so we also term a
meta-object as a reflective layer.

At the top of the client side stack, an invocation consists of the reference to the destination
interface, the method to be invoked, and the parameters to the method as an array of objects.
Interface references are complex objects that can be resolved by a protocol stack to provide a route

Typed Communication

Generic Communication

Untyped Communiction

Figure 2 Reflective Layers in the Protocol Stack

MarshalLayer

 TransportLayer

 ReferenceLayer

 Stub

 Client

Communication
infrastructure

Request-level RL

 RMILayer

Message-level RL

MarshalLayer

 TransportLayer

 ReferenceLayer

 ServerCallLayer

 Service
 Object

Communication
infrastructure

Request-level RL

 RMILayer

Message-level RL

4

from the client to the destination interface.
As the call proceeds down the stack, each layer can manipulate the invocation. In figure 2,

MarshalLayer is used for marshaling or unmarshaling parameters and return values,
ReferenceLayer for differentiating different objects on the same network address, and RMILayer
for the implementation of the remote method invocation protocol. By the bottom of the stack, the
original reference will have been resolved to an appropriate endpoint or connection identifier, and
sufficient information will have been marshaled into a buffer to allow reconstruction of the
invocation on the server. On the server side, the reverse process takes place, so that ultimately the
destination object, method and parameters are available.
4.2 Configurable Reflective Layer

RECOM supports dynamic configuration of the binding between the specific client and
server, such as inserting into the protocol stack some reflective layers of high level features. These
reflective layers meet the needs of some non-functional properties required for middleware, and
are usually generic, so they can be configured into different protocol suites. They are divided into
two classes: one is the request-level reflective layer (request-level RL), and the other is the
message-level reflective layer (message-level RL). Request-level reflective layers can be inserted
between the stub and the MarshalLayer on the client side, or between the ServerCallLayer and
MarshalLayer on the server side. They intercept typed invocation information, and can be used to
cache the results on the client side in order to improve performance, or redirect the invocation to
an alternative server to gain high availability when the initial server is down. Message-level
reflective layers can be inserted between the RMILayer and the TransportLayer on the client side
or the server side. What they intercept are marshaled messages in byte arrays, and can be used to
encrypt/unencrypt or compress/uncompress messages. While RECOM supplies some optional
reflective layers, application programmers can also implement their own reflective layers for
special uses according to the open interface of the reflective layer.

In order for application programmers to insert (or delete) reflective layers into (or from)
invocation chains through appropriate configuration interface, RECOM provides with an explicit
binding protocol. Employing the explicit binding protocol, the client (or the third parties) can
obtain not only the reference to the server interface, but also the references to the client-side
binding and server-side binding. That is to say, bindings can be operated (or configured) by users,
or in reflection parlance, the binding is reified. The binding configuration interface is offered as
follows. Two groups of methods are respectively used for configuration of request-level reflective
layers and message-level reflective layers.

Interface BindMgr
{
 ID addReqRftLayer(ReqRftLayer rlayer);
 Boolean removeReqRftLayer(ID id);
 Boolean removeAllReqRftLayers();

 ID addMsgRftLayer(MsgRftLayer mlayer);
 Boolean removeMsgRftLayer(ID id);
 Boolean removeAllMsgRftLayers();

 }
It deserves attention that multiple reflective layers can together be configured in the same

binding.
5 Related Work and Conclusion

CORBA2.2 specification introduces the interceptor concept[12]. Interceptors allow users to
monitor invocation requests and replies, and can be used on both server sides and client sides. But,
CORBA interceptors are based on callbacks. Compared with RECOM reflective layers, the main
limitation of callbacks is that it is hard (if not impossible) to alter the basic control flow of
message processing in the middleware system. On the contrary, after obtaining the information of
invocation and doing some processing, RECOM reflective layers will explicitly invoke the next
layer in the call chain. So they can catch the exceptions thrown by the middleware, other layers, or
server objects, and then deal with these exceptions by themselves, or rethrow them. Since
invoking the next layer is explicit, a reflective layer can avoid propagating a request forward
simply by not calling its next layer. A common sort of configuration that may use this facility is
one that does client-side caching of results.

5

There is a growing interest in the use of reflection in distributed systems. With respect to
middleware, researchers at Illinois have carried out initial experiments in ORB supporting robust
and time-critical distribution[9]. The level of configuration is however restricted to marshaling,
dispatching, concurrence and other lower level mechanisms. Research at Lancaster University
conduct research about an architecture of open distributed multimedia platform[10]. They define
four distinct meta-spaces that reify specific aspects of the middleware architecture: encapsulation,
composition, environment and resource. In their approach they build an ORB at the base-level,
that can configure itself through the deployment of these four meta-spaces. Instead, our work
builds middleware at the meta-level, because we treat the binding between the specific client and
server as the self-representation of middleware. Every binding monitors and controls the whole
process of communication between the specific distributed objects. In other words, this self-
representation completely reflects all aspects of the implementation of middleware, so RECOM is
more flexible. In the design of the reflective structure of RECOM, we refer to the work of an
experimental middleware platform called FlexiNet developed by researchers at APM[8], but
FlexiNet only supports static configuration of protocol stacks at compile time. Our work is new
regarding to this related work, since we offer an explicit binding protocol used to adapt protocol
stacks at runtime.

We are striving for enriching RECOM binding factories, which are used to produce bindings
of different types, and reflective layers. It is also desirable to separate the program used for the
implementation of reflective layers and the configuration of bindings (which is termed as a meta-
program in reflection parlance) from the application program, and associate them when necessary,
because meta-programs usually deal with non-functional properties of a system and should be
accomplished by the experts of special knowledge. Finally, conditionality among different
reflective layers deserves study.
Referencs
1 A. Campbell, G. Coulson, and M. Kounavis. Managing Complexity: Middleware Explained. IEEE IT Pro,
September/October, 1999
2 M. Roman, F. Kon and R. Cambell. Reflective Middleware: From Your Desk to Your Hand. Technical Report
UIUCDCS-R-2000-2195. UIUC Software Research Group, 2000
3 W. Cazzola, S. Chiba, and T. Ledoux. Reflection and Meta-Level Architectures: State of the Art, and Future
Trends. In Jacques Malenfant, Sabine Moisan, and Ana Moreira, editors, ECOOP'2000 Workshop Reader, Lecture
Notes in Computer Science 1964, pages 1-15. Springer-Verlag, 2000.
4 W. Cazzola. Evaluation of Object-Oriented Reflective Model. In Proceedings of ECOOP Workshop on
Reflective Object-Oriented Programming and Systems (EWROOPS’98). Brussels, Belgium, Jul. 1998.
5 B. C. Smith. Reflection and Semantics in a Procedural Language. Technical Report 272, MIT Laboratory of
Computer Science, 1982.
6 P. Maes. Concepts and Experiments in Computational Reflection. In Norman K. Meyrowitz, editor, Proceedings
of the 2nd Conference on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’87),
volume 22 of Sigplan Notices, pages 147–156, Orlando, Florida, USA, October 1987. ACM.
7 J. Ferber. Computational Reflection in Class Based Object Oriented Languages. In Proceedings of 4th
Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA’89), volume 24 of
Sigplan Notices, pages 317–326. ACM, October 1989.
8 R. Hayton, ANSA Team. FlexiNet Architecture. Architecture Report, Citrix Systems (Cambridge) Limited, Feb.
1999.
9 F. Kon, R. Campbell, and M. Roman. Design and Implementation of Runtime Reflection in Communication
Middleware: the DynamicTAO Case. In proceeding of ICDCS’99 Workshop on Middleware, 1999.
10 G. Blair, F. Costa, G. Coulson, etc. The Design of a Resource-Aware Reflective Middleware Architecture. In
Pierre Cointe, editor, Proceedings of the 2nd International Conference on Reflection’99, LNCS 1616, pages 115–
134, Saint-Malo, France, July 1999.Springer-Verlag.
11 G. Kiczales. Beyond the black box: Open Implementation. IEEE Software, 13(1), 1996.,
12 Object Management Group. CORBA2.3.1/IIOP Specification. OMG, Oct. 1999
13 Geoff Coulson, Refective Middleware, Available at http://computer.org/dsonline/middleware/RM.htm, 2001
14 RM’2000. Workshop on Reflective Middleware of Middleware’2000. Available at
http://www.comp.lancs.au.uk/computing/RM2000. April, 2000.
15 Sun Microsystems. Java Core Reflection. Available at
http://java.sun.com/products/jdk/1.2/docs/guide/reflection/.

